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There Are No Killer Apps but 
Connecting Neural Activity to 
Behavior through Computation 

Is Still a Good Idea
P. Read Montague

Abstract

The quest to understand the relationship between neural activity and behavior has been 
ongoing for well over a hundred years. Although research based on the stimulus-and-
response approach to behavior, advocated by behaviorists, fl ourished during the last 
century, this view does not, by design, account for unobservable variables (e.g., mental 
states). Putting aside this approach, modern cognitive science, cognitive neuroscience, 
neuroeconomics, and behavioral economics have sought to explain this connection 
computationally. One major hurdle lies in the fact that we lack even a simple model 
of cognitive function. This chapter sketches an application that connects neuromodula-
tor function to  decision making and the  valuation that underlies it. The nature of this 
hypothesized connection offers a fruitful platform to understand some of the informa-
tional aspects of  dopamine function in the brain and how it exposes many different 
ways of understanding motivated choice.

Introduction

Let’s face it. Computational neuroscience and its fl edging product, compu-
tational psychiatry, simply do not have a killer app—yet. Certainly nothing 
like Newton’s laws, William Rowan Hamilton’s transformative approach to 
dynamics, the Dirac equation, Darwin’s evolution by natural selection and 
its rendering in the twentieth century modern synthesis (Mayr and Provine 
1980/1998), or even Shannon’s breakthrough efforts in what is now called in-
formation theory. Marshaling such a pantheon isn’t quite fair, but it makes a 
point. We should require a lot from any account that calls itself a killer app, 
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especially in an area that purports to connect mind and brain in a meaningful 
way. In the world of sustaining healthy human mental function and character-
izing and treating unhealthy human mental function, the killer app will depend 
on a much more evolved body of constructs (models) surrounding cognition. 
The limiting factor is (at least) our woefully simple models of cognitive func-
tion. We simply do not yet have an evolved and integrated model of human 
cognition that can render a human-like model agent in a perceptual problem 
or learning problem to use such a set up to gain penetrating insight into a psy-
chiatric disorder. Instead, the current situation bears the hallmarks of the early 
days of any discipline: some very provocative models exist, focused in particu-
lar areas and mapped with variable success to experimental data extracted from 
candidate neural systems.

In this chapter, I will sketch an application that connects neuromodulator 
function to  decision making and the  valuation that underlies it. The nature of 
this hypothesized connection has proved to be a fruitful platform for under-
standing some of the informational aspects of  dopamine function in the brain 
and how it exposes many different ways of understanding motivated choice.

The Platform of  Reinforcement Learning

For well over a 100 hundred years, models of learning have been dominated by 
psychological concepts about how animals adapt to the changing world around 
them. The foundational ideas emerged in the early nineteenth century from the 
work of physiologist Ivan  Pavlov and his star student Jerzy  Konorski on the 
conditioned refl ex (Pavlov 1927; Konorski 1949). This work developed into an 
entire behaviorist movement that fl ourished through the twentieth century with 
its now familiar collection of names: Thorndike, Hull, Watson, Skinner and so 
on. One of the strictures of this movement was to remove all mention of vari-
ables that could not be observed, especially any mention of unobserved mental 
states. All behavior was to be rendered as stimulus and response, a view that 
modern cognitive science, cognitive neuroscience, neuroeconomics, behav-
ioral economics, and their computational expressions toss aside. Apparently, 
there was something to be feared about positing unobserved states of mind as 
though such unobserved entities prevent the hard science from taking place. 
The  behaviorists were likely just reacting to Freud’s infl uence on psychology; 
however, it is noteworthy that unobserved or unobservable entities and states 
pervade physics and biophysics despite the fact that both areas are viewed as 
hard science.  Biophysical models of ionic channel function have long and hap-
pily accepted unobserved states and state transitions, usually cast mathemati-
cally as  hidden Markov models (Hille 2007). Latent states,  latent variables, 
unseen fi tness or hazard functions, hidden Markov models, and their more ex-
otic congeners are now simply part of the inventory of modern computational 
approaches to mind and brain.
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Capturing the Regularities of Learning: From 
Bush–Mosteller to Sutton–Barto

One key  area  where a rigid stimulus-response framing was very useful was 
 learning, since it is here that experimental psychology fi rst began to identify 
so-called learning rules—statistically lawful mappings between input, internal 
state, and the output of the entire creature. All mobile creatures need to learn 
because they move; movement ensures that the contingencies for survival 
change, and do so on multiple time and space scales. Sessile creatures (e.g., 
sea cucumber) have developed some very peculiar strategies for adapting to 
environmental  threat (they partially eviscerate themselves as a defense), but 
a moving creature is where real learning action takes place. At the minimum, 
mobile creatures must deal with the environmental changes that result from 
their own movement. In this sense, movement and learning have always been 
partner processes, so behaviorist paradigms provide very nice and structured 
ways to probe simple learning and capture the results in equally simple laws.

The rules that characterize learning in mobile animals start with the work of 
Ivan  Pavlov, who originated the modern interpretation of the conditioned re-
fl ex: ring the bell, feed the dog, rinse-and-repeat. Through this regular training, 
the originally neutral bell comes to elicit the features (orientating, salivating, 
secretion of digestive enzymes, and so on) of the unconditioned response to 
food. This is classical conditioning, and its “cousin,” instrumental condition-
ing, contains the same regularities but requires an action on the part of the 
animal. Pavlov generated a tradition around this idea, and it was certainly the 
foundation for the  behaviorism movement, as mentioned above. However, for 
modern computationalists, the important steps were taken just after World War 
II with the emergence of work by  Robert Bush and  Frederick Mosteller (e.g., 
Bush and Mosteller 1951a, b, 1953, 1955). At that time, these investigators 
were considered part of a new breed of mathematical psychologists—perhaps 
the fi rst generation (were it not for Hermann Helmholtz’s work in the late nine-
teenth century). They originated the idea of  prediction learning and introduced 
the fi rst rigorous account of the kinds of learning described by the behaviorists. 
Rendering learning as a problem of learning-to-predict was a departure from 
the correlational theories of  Konorski (1949) and Hebb (1949). The problem 
with such correlational accounts are manifold, but the main impediment is that 
they do not provide a natural way for a “correlation-based” learner to learn 
chains of events. Both correlational accounts and prediction accounts for learn-
ing, however, viewed the animal as a statistical learner whose “learning job” 
was to extract regularities latent in the statistics of their experience.

In the Bush and Mosteller account, the conditioning described by Pavlov 
was rendered as a trial-based prediction of the unconditioned response and also 
provided a simple way to update that prediction from trial to trial:

p p R pt t o t+ = + −( )1 α . (13.1) 
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The goal here is to associate stimuli with actions, and the Bush–Mosteller 
model updates the probability p that the action (salivation) occurs on trial t+1 
as a function of its value in the previous trial t and the value of the observed 
reward Ro. This is the fi rst good account of prediction learning to explain the 
learning associated with behavioral conditioning paradigms. But Bush and 
Mosteller went further and modeled the animal as a collection of probabilistic 
processes. In an obituary for the late Robert Bush, Mosteller (1974:170) aptly 
describes the modern fl avor of their approach:

In the models for learning that Bush and I developed, the fundamental represen-
tation was that prior to a trial an organism was a vector of response probabilities. 
A stimulus corresponded to a mathematical operator that replaced the organism’s 
current vector by a new probability vector. In the models of Bush and Mosteller 
(1955), the effects of previous responses were summed up in the current vector, 
independent of the path to the present state. The operators had a linear form, so 
that if p is a vector of probabilities (p1, p2,..., pk) and Q is applied to p the new 
vector is:

Qp = αp + (1 – α) λ,

where λ is also a probability vector (λ1, λ2,..., λk) and α is a scalar, 0 ≤ α ≤ 1. If Q 
is repeatedly applied, the limiting vector is λ, when α ≠ 1.

This is an extremely rich model of the processes putatively at work inside the 
learner. Notice that even the history-independent assumption (the Markovian 
assumption) is present in their papers as of the early 1950s, “…independent of 
the path to the present state” (see also Rescorla and Wagner 1972). As forward 
looking as the Bush–Mosteller approach was, it still missed some important 
aspects of learning, such as the detailed dependence on timing of stimuli and 
other well-known conditioning effects such as secondary conditioning: If A 
predicts reward, and B is trained to predict A, then B will also predict reward. 
From the psychological and computer science literature there emerged anoth-
er approach to this problem offered up by Richard Sutton and Andrew Barto 
(1981, 1987, 1998; for complete references, see Sutton 1988). Their work fo-
cused on an incremental learning algorithm, called the method of  temporal 
differences, which exploited differences between successive predictions rather 
than simply the difference between a prediction and an outcome. This differ-
ence is crucial, as it framed the “ goal of learning” as the problem of learning 
to value the future of the states of the agent. This agent is portrayed as moving 
about in some kind of high-dimensional state-space, making transitions from 
one state St at time t to another state St+1 at time t + 1. There were two basic 
assumptions to this approach. First, the goal of learning is to learn the value of 
states taken as the discounted amount of future  reward expected from that state 
forward into the distant future. The other assumption was that it did not matter 
how the state was reached:
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V S E r r r fort t t t( )= + + +( ) < ≤+ +γ γ γ1
2

2 0 1�   . (13.2) 

Here the expected value operation “E” is slightly bad notation. The expecta-
tion E is taken for each “tic” forward and so we should read it as expressing 
that each r is a separate expected value of reward at each step to the future of . 
So the value of the current state of the agent depends on its future. The second 
bit of ambiguity in Equation 13.2 is that the expectation implicitly includes 
the rule that the agent uses to transition from state St to state St+1 The single E 
symbol does not specify this clearly in Equation 12.2, but these details do not 
matter here.

Overall, the Sutton–Barto account appears to be a small change from the 
Bush–Mosteller approach; moreover, it mimicked approaches from the late 
1950s by Samuel, who made automatic checker-playing programs (Samuel 
1959). The Sutton–Barto effort did account, however, for secondary condition-
ing, as well as the way that an agent learns to chain events together. It also con-
nected to animal conditioning (Sutton and Barto 1987) and to an independently 
developing area of  optimal control called dynamic programming (Bellman 
1957). As I review below, it also reached down to important biological obser-
vations. This multidimensional reach, which crossed levels of description, is 
and was what makes this work so important. Sutton and Barto understood the 
connection of their work to previous approaches but they also understood that 
they had added crucial insights. Quoting from Sutton (1988:9):

This article introduces a class of incremental learning procedures specialized 
for prediction – that is, for using past experience with an incompletely known 
system to predict its future behavior. Whereas conventional prediction-learning 
methods assign credit by means of the difference between predicted and actual 
outcomes, the new methods assign credit by means of the difference between 
temporally successive predictions. Although such temporal-difference methods
have been used in Samuel’s checker player, Holland’s bucket brigade, and the 
author’s Adaptive Heuristic Critic, they have remained poorly understood. Here 
we prove their convergence and optimality for special cases and relate them to 
supervised-learning methods.

The Valuation of the Future

Let  us turn back to the central idea of Sutton–Barto: the value of a state scales 
according to the value of the discounted future it portends. Why should a mo-
bile creature need to value the future? One word: uncertainty. It appears that in 
our world a vast amount of uncertainty lies in the future with the more impor-
tant bits of uncertainty rolling out in the near future. Therefore, the valuation 
of a state based on its expected future, when combined with the assumption 
that the system is Markovian (history independent), animates the power of this 
simple approach. Let us take Equation 13.2 and step forward one tic to a new 
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state St+1 and value this new state in exactly the same way: as the expected 
value of reward from that state forward:

V S E r r rt t t t+ + + +( )= + + +( )1 1 2
2

3γ γ � . (13.3) 

In principle, Equations 13.2 and 13.3 would require a system to run through a 
state infi nitely often and sum a long (infi nite) series of numbers to estimate the 
value of the state. Herein lies the very nice way that this valuation function is 
formulated. If we scale Equation 13.3 by the discount factor γ (the rate that the 
future becomes less valuable at each “tic”) then:

γ γ γ γV S E r r rt t t t+ + + +( )= + + + )(1 1
2

2
3

3 � . (13.4) 

Notice now that there is a way to relate the value function of time t to the value 
at time t+1:

V S E r V St t t( )= { }+ ( )+γ 1 . (13.5) 

If the agent (the learner) had perfect estimates of the value of all its states, then 
this expression would be exact. The real world is not exact so this condition 
never holds perfectly; however, it does give a natural way to defi ne an error 
signal.  Simply subtract the left-hand side from the right-hand side:

.1= { }+ ( )− ( )+E r V S V St t tγ“0” (13.6) 

The quotes here indicate that this difference is never really 0 in the real world. 
However, Sutton and Barto exploited this  temporal difference (TD) to build 
an approach to learning that has wide-reaching applications and implications 
(Sutton and Barto 1998). An error signal of just this type was fi rst hypothesized 
to be a general mechanism for biological systems to learn how to value states, 
store predictions, and link value to action based on predictions (Montague et 
al. 1993, 1995, 1996, 2004; Schultz et al. 1997; Dayan et al. 2000; Dayan and 
Abbot 2001; Dayan and Daw 2008; Niv and Montague 2008; Dayan 2012).

Connecting Levels: Computation, Behavior, and Neuronal Activity

An early sign of a strong connection of a TD error signal to a biological system 
was the connection of  octopaminergic neuron activity to odorant conditioning 
in honeybees (Real 1992; for physiology, see Hammer 1993). Behaviorally, 
honeybees show many sophisticated computations in the way they sample 
fl owers yielding variable returns. For two fl owers yielding the same mean re-
turn (let’s say in nectar units), bees will sample more frequently from the fl ow-
er with lower variance in the nectar return despite the matched average return 
(Real 1992; Hammer and Menzel 1995). All things being equal, bees avoid the 
fl ower color that predicts the more variable return. This is just one of many 
sophisticated computations available to the honeybee for adjusting its behavior 
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in pursuit of maximizing its returns on nectar. What is remarkable is the pres-
ence and functional role of aminergic neurons in the bee’s subesophageal gan-
glion that project to widespread targets throughout the bee brain and deliver the 
neuromodulator octopamine (a close chemical cousin to dopamine). Without 
diving into too much detail, let me summarize by saying: (a) it is known now 
that octopamine action at target neural sites is crucial for conditioning, (b) the 
physiological behavior of these neurons is consistent with a TD error signal, 
and (c) this error signal can be mapped simply onto action choice by the bee 
in a manner (somewhat artifi cial though it may be) that can account straight-
forwardly for how the bee trades off mean and variance of nectar returns (see 
also Douglas 1995; Montague et al. 1995). The TD account was provocative 
because of the way it linked levels of description of the bee: the physiology 
of the octopamine neurons under a rigorous behavioral challenge, the behav-
ioral consequences of the TD error computation putatively performed by these 
aminergic neurons, and the computations that reached from the level of the 
neurons to the choice behavior of the bee.

A richer connection between the TD algorithm (the computation), behavior-
al choice, and detailed recordings of neuronal behavior arose in the early 1990s 
from the work of Wolfram Schultz and his colleagues. In their work, nonhu-
man primates were trained on simple conditioning tasks where a light would 
indicate which of two levers were to be pushed to receive a juice reward. Early 
in the training,  dopamine neurons give phasic responses only to the delivery 
of reward; these responses disappear, however, with training after which the 
neurons give transient responses only to the earliest consistent predictor of 
future reward (here the initial cue light). These data are now over twenty years 
old, but the guidance of the Sutton–Barto TD algorithm in understanding the 
features of these kinds of data is made clear by the then novel interpretation 
that the algorithm provided. These features include:

1. Temporal consistency was key and clearly being encoded into the re-
sponse of the dopamine neurons. For the nearly identical behavioral 
paradigms, the neurons lose their initial response to reward delivery, 
develop a transient response to the earliest predictive cue, but differ 
in the way they respond at the trigger cue. When the timing of the 
trigger cue is completely predictable, neurons give no response; when 
the trigger cue has temporal uncertainty, neurons continue to modulate 
at the trigger. This is to be expected quite naturally from a TD error 
signal-based account; however, a trial-based account such as the Bush–
Mosteller rule (and also of course the  Rescorla–Wagner rule) would 
have to add extra detail to explain these data.

2.  Sensory-reward prediction and sensory-sensory prediction are unifi ed 
in a TD error-based account. The sensory-sensory prediction piece is 
exemplifi ed by the response (or lack thereof) of the dopamine neurons 
to the trigger cue.
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3. Dopamine neurons emit information even when they do not modulate 
their activity. This means, for example, that the neurons are emitting 
information throughout the duration of the trial. This is a new idea, 
certainly for the conditioning literature (though the weakly electric fi sh 
literature may be a good counterexample), and the lack of modulation 
during the interval between cues and reward outcome were vexing for 
the experimentalists who uncovered these data. In fact, this problem 
blocked their understanding of what the dopaminergic modulation 
could mean. As Schultz et al. (1993:900) stated: “None of the dopamine 
neurons showed sustained activity in the delay between the instruction 
and trigger stimuli that would resemble the activity of neurons in dopa-
mine terminal areas, such as the  striatum and frontal cortex.…The lack 
of sustained activity suggests that dopamine neurons do not encode 
representational processes, such as  working memory, expectation of 
external stimuli or reward, or preparation of movement. Rather, dopa-
mine neurons are involved with transient changes of impulse activity 
in basic  attentional and  motivational processes underlying learning and 
cognitive behavior.”

Such delay period nonmodulation is to be expected from a TD error-based 
account of the results. However the conclusion is understandable. At the time 
(1992–1993), results using working memory tasks in nonhuman primates 
showed delay period activity in dopaminergic terminal regions of cortex (e.g., 
Brodman area 46; Goldman-Rakic et al. 2004) that depended on intact dopa-
mine transmission through identifi ed receptor types. It seems likely that this 
inspired Schultz and colleagues to look for delay period activity at the level of 
parent dopamine neurons in the midbrain that gave rise to this cortical input. 
The computational model (even the simplest Sutton–Barto TD error account) 
was essential to see these data in a different light. Furthermore, while trial-
based accounts, such as the  Rescorla–Wagner rule, have been offered to ac-
count for these physiological data, they cannot account for the signature tem-
poral features. This point has been made clearly in a review of the dopamine 
 prediction error hypothesis by Glimcher (2011). Glimcher also makes a very 
nice social case for the precedence and farsightedness of the Bush–Mosteller 
approach to modeling animal conditioning, when set beside the very popularly 
quoted Rescorla–Wagner rule.

Schultz and colleagues have now provided strong evidence for the  TD error 
model and have shown (among a variety of new fi ndings) that midbrain dopa-
minergic responses encode the expected value of the future predicted reward in 
similar experiments (see Schultz et al. 1997; Montague et al. 2004; Tobler et al. 
2005; and the sober warnings of Dayan and Niv 2008). This summary suggests 
that mammals possess an effi cient  prediction system that can be deployed in 
a variety of behavioral settings to learn to value the near-term future and act 
reasonably based on those  valuations. Here, I have avoided all discussion of 
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the interesting complexities that arise when mapping such valuations to ac-
tion choice and the further connections that can be made to optimizing control 
models (e.g.,  Kalman-fi lter models and models that require more complex rep-
resentations). Let us fi nish here with some forward-looking pointers to the way 
that reinforcement-learning models can be applied to disease states like addic-
tion (McClure et al. 2003a; Redish 2004), human neuroimaging data through 
model-based approaches to  reinforcement learning (McClure et al. 2003b; 
O’Doherty et al. 2003, 2004), and to “exceptions” where evidence in rodents 
and nonhuman primates suggests that such models are incomplete (of course 
they are) or misleadingly wrong (Dayan and Niv 2008; Niv and Schoenbaum 
2008). In my opinion, the big questions for reinforcement-learning models 
involve the nature of the representations used to control midbrain dopamine 
neurons and the use of these representations in  cognitive control (Carter et al. 
1998; Botvinick et al. 1999, 2001, 2009).

Reaching toward Humans

Thus far, this account has focused on the valuation aspect of the TD model and 
ignored the  action-selection piece, except for simple conditioning paradigms 
which help highlight the main points. With the advent of functional MRI, many 
functional questions can now be asked that would probe directly the claims 
or extensions of the TD model. In the fi rst direct test of the dopamine  predic-
tion error hypothesis in humans, McClure et al. (2003b) and O’Doherty et al. 
(2003) found that in terms of BOLD signals, the  striatum shows activation and 
deactivation in accord with the TD model. These results are comforting but not 
defi nitive. There are many signals that may combine at the level of the stria-
tum to elicit BOLD responses consistent with prediction error signals. Direct 
measures of dopamine and other neuromodulator delivery during similar be-
havioral probes will be required to expose the exact contributions of dopamine 
delivery to such BOLD measurements. One of the novelties opened up by the 
O’Doherty et al. and McClure et al. work is the possibility of using the com-
putational models to defi ne a computational process encoded throughout some 
behavioral challenge, and then use estimates of this process to seek its physical 
correlates. This approach is now called model-based fMRI.

Hypervaluation Disease

Another reach toward humans  can be seen in the work of Redish (2004), who 
used TD-type models to address  addiction as (in part) a valuation disease. The 
 temporal-difference reinforcement-learning (TDRL)  model uses an error, the 
TD error, putatively encoded by transient changes in dopaminergic activity 
(and presumably dopamine delivery) to adjust available parameters to estimate 
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the expected value of discounted future rewards predicated on the current state 
of the animal. As expressed by Redish (2004):

V t ds E R ss t

t
( )= ( )⎡⎣ ⎤⎦

−
∞

∫ γ . (13.7) 

This is just a continuous version of Equation 13.2, where the dependence on 
state is replaced with a time variable (in simple settings such an equivalence 
is fi ne but potentially confusing). As the animal learns to associate sensory 
cues with receipt of rewards, the dopamine systems adjusts its value function 
using the TD error and does so until the error is driven to 0. What if one could 
induce an error without going through the entire cue-predicts-future-reward 
machinery? Wouldn’t such an “outside” error induce the system to learn the 
wrong valuation function? The answer is yes. The idea proposed by Redish is 
that addictive drugs, such as  cocaine and  methamphetamine, produce “bumps” 
in dopamine release (bumps in the TD error term) through mechanisms that 
escape the cue-predicts-reward setting captured by the TDRL model. In doing 
so, the system cannot learn a value function; temporal differences in this value 
function cancel the impact of cues associated with drug taking. In short, the 
proposal is a value function “run away” where uncompensable changes in the 
value function, induced by pharmacologically mimicked error signals, create a 
kind of valuation disease condition. In his analysis, Redish is careful to point 
out that this feature is only one of many aspects of  addiction, but the entire pro-
posal centers around the model and its mapping on physical substrates in the 
brain and aberrant behaviors that can ensue.  This way of thinking has opened 
up many new questions in the area of addiction, and the models here have ex-
panded immensely in recent years. Computationalizing addiction will certainly 
lead to new insight and likely better models of it.

Flat Valuation Diseases and Rational Freezing Responses

 TDRL  models also provide a new way to understand some aspects of  Parkinson 
disease, a neurodegenerative disorder associated with a profound loss of mid-
brain dopamine neurons. By the time symptoms appear to warrant diagnosis, 
dopamine neuron loss ranges from 70–90%. There is virtually nothing known 
about how either dopamine systems or downstream targets adapt their dynam-
ics as this loss occurs. However, one possible consequence of dropping the 
number of neurons is to increase the “dopamine noise” at the target structures. 
If dopamine delivery fl uctuations are to communicate  reward  prediction er-
rors in their rapid (subsecond) transients and possibly other important com-
putations in their tonic (mesoscale) averages, then decreasing the number of 
neurons increases dopamine noise. A downstream target may not be able to 
distinguish the value of one state from another because the dopamine noise 
level is high. Ultimately this could look like a relative “fl at” value function to 
these downstream targets.
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Let us use this caricature and hypothesize that the best response to a fl at 
value function is to commit no new resources—do nothing. In fact, why not 
just freeze? Perhaps one part of the syndrome of Parkinson disease is a kind 
of rational freezing response to a fl at value function. In this sense, the small 
dopamine fl uctuations are buried in noise. Therapies that would raise base-
line dopamine (e.g., taking L-DOPA or perhaps putting engineered dopamine-
secreting cells in the striatum) would make those fl uctuations signifi cant and 
perhaps “readable” by the otherwise confused downstream processes. This is, 
of course, wild speculation, but its possibilities are suggested by the model and 
thus support modern efforts in computational neuroscience.

Breaking the Reinforcement-Learning Hegemony?

This brief summary has been, in large part, rearward-looking and very focused 
on the valuation part of the simplest  reinforcement-learning models. I close 
with apologies to those investigators whose work is not mentioned here: rein-
forcement-learning approaches are now so vast that it was not possible to in-
clude all relevant species of animal and explanation in this succinct summary. 
However, the best outcome for any class of model is to be very, very wrong in 
some productive way. There are already indications that reinforcement-learn-
ing models have guided work to some of these creaky zones (Dayan and Niv 
2008; Gershman et al. 2009; Dayan 2012).
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